

Welcome to Rel8!

Welcome to Rel8! Rel8 is a Haskell library for interacting with PostgreSQL
databases, built on top of the fantastic Opaleye [https://hackage.haskell.org/package/opaleye] library.

The main objectives of Rel8 are:

	Conciseness: Users using Rel8 should not need to write boiler-plate code.
By using expressive types, we can provide sufficient information for the
compiler to infer code whenever possible.

	Inferrable: Despite using a lot of type level magic, Rel8 aims to have
excellent and predictable type inference.

	Familiar: writing Rel8 queries should feel like normal Haskell programming.

Getting Started

	Getting Started
	The Example Schema

	Mapping Schemas to Haskell

	Writing Queries

Rel8 concepts

	DBType
	Combining newtype and DBType

	Parsing with DBType

	Deriving DBType via ReadShow

	Storing structured data with JSONEncoded

	The DBType subtypes

	Expr and Sql
	Expr

	null

	SQL and null-polymorphic expressions

	Tables
	Expr is a single-column table

	Tuples combine tables

	Custom table types

	Writing queries with Query
	Understanding the Query monad

	Selecting rows from tables

	Limit and offset

	Filtering queries

	Inner joins

	Left (outer) joins with optional

	Ordering results

	Aggregating queries

	Set operations

	INSERT, UPDATE and DELETE
	DELETE

	UPDATE

	INSERT

	RETURNING

	Default values

Tips and tricks

	Cookbook

More Resources

	The Haskell API documentation [https://hackage.haskell.org/package/rel8]
describes how individual functions are types are to be used.

	If you have a question about how to use Rel8, feel free to open a GitHub
discussion [https://github.com/circuithub/rel8/discussions].

	If you think you’ve found a bug, confusing behavior, or have a feature
request, please raise an issue at Rel8’s issue tracker [https://github.com/circuithub/rel8].

Getting Started

In this section, we’ll take a look at using Rel8 to work with a small database
for Haskell packages. We’ll take a look at idiomatic usage of Rel8, mapping
tables to Haskell, and then look at writing some simple queries.

Before we get started, we’ll be using the following language extensions and
imports throughout this guide:

{-# language BlockArguments #-}
{-# language DeriveAnyClass #-}
{-# language DeriveGeneric #-}
{-# language DerivingStrategies #-}
{-# language DerivingVia #-}
{-# language DuplicateRecordFields #-}
{-# language GeneralizedNewtypeDeriving #-}
{-# language OverloadedStrings #-}
{-# language StandaloneDeriving #-}
{-# language TypeApplications #-}
{-# language TypeFamilies #-}

import Prelude
import Rel8

The Example Schema

Before we start writing any Haskell, let’s take a look at the schema we’ll work
with. The author table has three columns:

	Column Name

	Type

	Nullable

	author_id

	integer

	not null

	name

	text

	not null

	url

	text

	

and the project table has two:

	Column Name

	Type

	Nullable

	author_id

	integer

	not null

	name

	text

	not null

A project always has an author, but not all authors have projects.
Each author has a name and (maybe) an associated website, and each project
has a name.

Mapping Schemas to Haskell

Now that we’ve seen our schema, we can begin writing a mapping in Rel8. The
idiomatic way to map a table is to use a record that is parameterised what Rel8
calls an interpretation functor, and to define each field with Column.
For this type to be usable with Rel8 we need it to be an instance of
Rel8able, which can be derived with a combination of DeriveAnyClass and
DeriveGeneric language extensions.

Following these steps for author, we have:

data Author f = Author
 { authorId :: Column f Int64
 , name :: Column f Text
 , url :: Column f (Maybe Text)
 }
 deriving stock (Generic)
 deriving anyclass (Rel8able)

This is a perfectly reasonable definition, but cautious readers might notice a
problem - in particular, with the type of the authorId field. While
Int64 is correct, it’s not the best type. If we had other identifier types
in our project, it would be too easy to accidentally mix them up and create
nonsensical joins. As Haskell programmers, we often solve this problem by
creating newtype wrappers, and we can also use this technique with Rel8:

newtype AuthorId = AuthorId { toInt64 :: Int64 }
 deriving newtype (DBEq, DBType, Eq, Show)

Now we can write our final schema mapping. First, the author table:

data Author f = Author
 { authorId :: Column f AuthorId
 , authorName :: Column f Text
 , authorUrl :: Column f (Maybe Text)
 }
 deriving stock (Generic)
 deriving anyclass (Rel8able)

And similarly, the project table:

data Project f = Project
 { projectAuthorId :: Column f AuthorId
 , projectName :: Column f Text
 }
 deriving stock (Generic)
 deriving anyclass (Rel8able)

To show query results in this documentation, we’ll also need Show instances:
Unfortunately these definitions look a bit scary, but they are essentially just
deriving (Show):

deriving stock instance f ~ Result => Show (Author f)
deriving stock instance f ~ Result => Show (Project f)

These data types describe the structural mapping of the tables, but we also
need to specify a TableSchema for each table. A TableSchema contains
the name of the table and the name of all columns in the table, which will
ultimately allow us to SELECT and INSERT rows for these tables.

To define a TableSchema, we just need to fill construct appropriate
TableSchema values. When it comes to the tableColumns field, we
construct values of our data types above, and set each field to the name of the
column that it maps to.

First, authorSchema describes the column names of the author table when
associated with the Author type:

authorSchema :: TableSchema (Author Name)
authorSchema = TableSchema
 { name = "author"
 , schema = Nothing
 , columns = Author
 { authorId = "author_id"
 , authorName = "name"
 , authorUrl = "url"
 }
 }

And likewise for project and Project:

projectSchema :: TableSchema (Project Name)
projectSchema = TableSchema
 { name = "project"
 , schema = Nothing
 , columns = Project
 { projectAuthorId = "author_id"
 , projectName = "name"
 }
 }

There is also some generics machinery available if you want to grab the field
information from your Rel8able type:

projectSchema :: TableSchema (Project Name)
projectSchema = TableSchema
 { name = "project"
 , schema = Nothing
 , columns = namesFromLabels @(Project Name)
 }

This will create a TableSchema for Project where every column name
corresponds exactly to the name of the field. If you need more flexibility, you
can use namesFromLabelsWith, which takes a transformation function.

Note

You might be wondering why this information isn’t in the definitions of
Author and Project above. Rel8 decouples TableSchema from the data
types themselves, as not all tables you define will necessarily have a schema.
For example, Rel8 allows you to define helper types to simplify the types of
queries - these tables only exist at query time, but there is no corresponding
base table. We’ll see more on this idea later!

With these table definitions, we can now start writing some queries!

Writing Queries

Simple Queries

First, we’ll take a look at SELECT statements - usually the bulk of most
database heavy applications.

In Rel8, SELECT statements are built using the Query monad. You can
think of this monad like the ordinary [] (List) monad - but this isn’t
required knowledge.

To start, we’ll look at one of the simplest queries possible - a basic SELECT
* FROM statement. To select all rows from a table, we use each, and
supply a TableSchema. So to select all project rows, we can write:

>>> :t each projectSchema
each projectSchema :: Query (Project Expr)

Notice that each gives us a Query that yields Project Expr rows. To
see what this means, let’s have a look at a single field of a Project Expr:

>>> let aProjectExpr = undefined :: Project Expr
>>> :t projectAuthorId aProjectExpr
projectAuthorId aProjectExpr :: Expr AuthorId

Recall we defined projectAuthorId as Column f AuthorId. Now we have
f is Expr, and Column Expr AuthorId reduces to Expr AuthorId.
We’ll see more about Expr soon, but you can think of Expr a as “SQL
expressions of type a".

To execute this Query, we pass it to select. This function takes both a
database connection (which can be obtained using hasql’s acquire function),
and the Query to run:

>>> Right conn <- acquire "user=postgres"
>>> :t select conn (each projectSchema)
select conn (each projectSchema) :: MonadIO m => m [Project Result]

When we select things containing Exprs, Rel8 builds a new response
table with the Result interpretation. This means you’ll get back plain
Haskell values. Studying projectAuthorId again, we have:

>>> let aProjectResult = undefined :: Project Result
>>> :t projectAuthorId aProjectResult
projectAuthorId aProjectResult :: AuthorId

Here Column Result AuthorId reduces to just AuthorId, with no
wrappping type at all.

Putting this all together, we can run our first query:

>>> select conn (each projectSchema) >>= mapM_ print
Project {projectAuthorId = 1, projectName = "rel8"}
Project {projectAuthorId = 2, projectName = "aeson"}
Project {projectAuthorId = 2, projectName = "text"}

We now know that each is the equivalent of a SELECT * query, but
sometimes we’re only interested in a subset of the columns of a table. To
restrict the returned columns, we can specify a projection by using Querys
Functor instance:

>>> select conn $ projectName <$> each projectSchema
["rel8","aeson","text"]

Joins

Another common operation in relational databases is to take the JOIN of
multiple tables. Rel8 doesn’t have a specific join operation, but we can
recover the functionality of a join by selecting all rows of two tables, and
then using where_ to filter them.

To see how this works, first let’s look at taking the product of two tables.
We can do this by simply calling each twice, and then returning a tuple of
their results:

>>> :{
mapM_ print =<< select conn do
 author <- each authorSchema
 project <- each projectSchema
 return (projectName project, authorName author)
:}
("rel8","Ollie")
("rel8","Bryan O'Sullivan")
("rel8","Emily Pillmore")
("aeson","Ollie")
("aeson","Bryan O'Sullivan")
("aeson","Emily Pillmore")
("text","Ollie")
("text","Bryan O'Sullivan")
("text","Emily Pillmore")

This isn’t quite right, though, as we have ended up pairing up the wrong
projects and authors. To fix this, we can use where_ to restrict the
returned rows. We could write:

select conn $ do
 author <- each authorSchema
 project <- each projectSchema
 where_ $ projectAuthorId project ==. authorId author
 return (project, author)

but doing this every time you need a join can obscure the meaning of the
query you’re writing. A good practice is to introduce specialised functions
for the particular joins in your database. In our case, this would be:

projectsForAuthor :: Author Expr -> Query (Project Expr)
projectsForAuthor a = each projectSchema >>= filter \p ->
 projectAuthorId p ==. authorId a

Our final query is then:

>>> :{
mapM_ print =<< select conn do
 author <- each authorSchema
 project <- projectsForAuthor author
 return (projectName project, authorName author)
:}
("rel8","Ollie")
("aeson","Bryan O'Sullivan")
("text","Bryan O'Sullivan")

Left Joins

Rel8 is also capable of performing LEFT JOINs. To perform LEFT JOINs,
we follow the same approach as before, but use the optional query
transformer to allow for the possibility of the join to fail.

In our test database, we can see that there’s another author who we haven’t
seen yet:

>>> select conn $ authorName <$> each authorSchema
["Ollie","Bryan O'Sullivan","Emily Pillmore"]

Emily wasn’t returned in our earlier query because - in our database - she
doesn’t have any registered projects. We can account for this partiality in our
original query by wrapping the projectsForAuthor call with optional:

>>> :{
mapM_ print =<< select conn do
 author <- each authorSchema
 mproject <- optional $ projectsForAuthor author
 return (authorName author, projectName <$> mproject)
:}
("Ollie",Just "rel8")
("Bryan O'Sullivan",Just "aeson")
("Bryan O'Sullivan",Just "text")
("Emily Pillmore",Nothing)

Aggregation

Aggregations are operations like sum and count - operations that reduce
multiple rows to single values. To perform aggregations in Rel8, we can use the
aggregate function, which takes a Query of aggregated expressions, runs
the aggregation, and returns aggregated rows.

To start, let’s look at a simple aggregation that tells us how many projects
exist:

Todo

>>> error "TODO"

Rel8 is also capable of aggregating multiple rows into a single row by
concatenating all rows as a list. This aggregation allows us to break free of
the row-orientated nature of SQL and write queries that return tree-like
structures. Earlier we saw an example of returning authors with their projects,
but the query didn’t do a great job of describing the one-to-many relationship
between authors and their projects.

Let’s look again at a query that returns authors and their projects, and
focus on the /type/ of that query:

projectsForAuthor a = each projectSchema >>= filter \p ->
 projectAuthorId p ==. authorId a

let authorsAndProjects = do
 author <- each authorSchema
 project <- projectsForAuthor author
 return (author, project)
 where

>>> :t select conn authorsAndProjects
select conn authorsAndProjects
 :: MonadIO m => m [(Author Result, Project Result)]

Our query gives us a single list of pairs of authors and projects. However,
with our domain knowledge of the schema, this isn’t a great type - what we’d
rather have is a list of pairs of authors and /lists/ of projects. That is,
what we’d like is:

[(Author Result, [Project Result])]

This would be a much better type! Rel8 can produce a query with this type by
simply wrapping the call to projectsForAuthor with either some or
many. Here we’ll use many, which allows for the possibility of an
author to have no projects:

>>> :{
mapM_ print =<< select conn do
 author <- each authorSchema
 projectNames <- many $ projectName <$> projectsForAuthor author
 return (authorName author, projectNames)
:}
("Ollie",["rel8"])
("Bryan O'Sullivan",["aeson","text"])
("Emily Pillmore",[])

DBType

The DBType type class provides a bridge between database expression values
and Haskell values. Rel8 comes with stock instances for most types that come
predefined with PostgreSQL, such as int4 (which is represented as by
Data.Int.Int32) and timestamptz (which is UTCTime from Data.Time).
This means that you need at least one DBType instance per database type,
though most of these primitive DBTypes should already be available.

Combining newtype and DBType

You can define new instances of DBType by using Haskell “generalized
newtype deriving” strategy. This is useful when you have a common database
type, but need to interpret this type differently in different contexts. A very
common example here is with auto-incrementing id counters. In PostgreSQL,
it’s common for a table to have a primary key that uses the serial type,
which means the key is an int8 with a default value for INSERT. In
Rel8, we could use Int64 (as Int64 is the DBType instance for
int8), but we can be even clearer if we make a newtype for each type
of id.

If our database has users and orders, these tables might both have ids, but
they are clearly not meant to be treated as a common type. Instead, we can make
these types clearly different by writing:

newtype UserId = UserId { getUserId :: Int64 }
 deriving newtype DBType

newtype OrderId = OrderId { getOrderId :: Int64 }
 deriving newtype DBType

Now we can use UserId and OrderId in our Rel8 queries and definitions,
and Haskell will make sure we don’t accidentally use an OrderId when we’re
looking up a user.

If you would like to use this approach but can’t use generalized newtype
deriving, the same can be achived by using mapTypeInformation:

instance DBType UserId where
 typeInformation = mapTypeInformation UserId getUserId typeInformation

Parsing with DBType

DBTypes can also refine database types with parsing, which allows you to
map more structured Haskell types to a PostgreSQL database. This allows you to
use the capabalities of Haskell’s rich type system to make it harder to write
incorrect queries. For example, we might have a database where we need to store
the status of an order. In Haskell, we might write:

data OrderStatus = PaymentPending | Paid | Packed | Shipped

In our PostgreSQL we have a few choices, but for now we’ll assume that they are
stored as text values.

In order to use this type in Rel8 queries, we need to write an instance of
DBType for OrderStatus. One approach is to use
parseTypeInformation, which allows you to refine an existing DBType:

instance DBType OrderStatus where
 typeInformation = parseTypeInformation parser printer typeInformation
 where
 parser :: Text -> Either String OrderStatus
 parser "PaymentPending" = Right PaymentPending
 parser "Paid" = Right Paid
 parser "Packed" = Right Packed
 parser "Shipped" = Right Shipped
 parser other = Left $ "Unknown OrderStatus: " <> unpack other

 printer :: OrderStatus -> Text
 printer PaymentPending = "PaymentPending"
 printer Paid = "Paid"
 printer Packed = "Packed"
 printer Shipped = "Shipped"

Deriving DBType via ReadShow

The DBType definition for OrderStatus above is a perfectly reasonable
definition, though it is quite verbose and tedious. Rel8 makes it easy to map
Haskell types that are encoded using Read/Show via the ReadShow
wrapper. An equivalent DBType definition using ReadShow is:

data OrderStatus = PaymentPending | Paid | Packed | Shipped
 deriving stock (Read, Show)
 deriving DBType via ReadShow OrderStatus

Storing structured data with JSONEncoded

It can occasionally be useful to treat PostgreSQL more like a document store,
storing structured documents as JSON objects. Rel8 comes with support for
serializing values into structured representations through the JSONEncoded
and JSONBEncoded deriving-via helpers.

There usage is very similar to ReadShow - simply derive DBType via
JSONEncoded, and Rel8 will use ToJSON and FromJSON instances (from
aeson) to serialize the given type.

For example, a project might use event sourcing with a table of events. Each
row in this table is an event, but this event is stored as a JSON object. We
can use this type with Rel8 by writing:

data Event = UserCreated UserCreatedData | OrderCreated OrderCreatedData
 deriving stock Generic
 deriving anyclass (ToJSON, FromJSON)
 deriving DBType via JSONBEncoded Event

Here we used JSONBEncoded, which will serialize to PostgreSQL jsonb
(binary JSON) type, which is generally the best choice.

The DBType subtypes

DBEq

The DBEq type class represents the subclass of database types that support
equality. By supporting equality, we mean that a type supports the =
operator, and also has a suitable notion of equality for operations like
GROUP BY and DISTINCT. On the one hand, this class is like Haskell’s
Eq type class. The main difference is that this class has no methods.

DBOrd

The DBOrd type class represents the subclass of database types that support
the normal comparison operators - <, <=, >= and >.

DBMax and DBMin

The type classes indicate that a database type supports the min() and
max() aggregation functions.

DBSemigroup and DBMonoid

These type classes exist to give Rel8’s API a similar feel to Haskell
programming. Many database types have a sensible monoid structure, with the
presence of a mempty-like expression, and an associative operation to
combine Exprs.

DBNum, DBIntegral and DBFractional

These type classes are used to present a familiar numeric type hierarchy for
Haskell programmers.

	DBNum
	This class indicates that a type supports the +, -, and *
operators, along with the abs(), negate() and sign() functions.
Database types that are instances of DBNum allow Num (Expr a) to be
used (allowing you to combine expressions with Haskell’s normal +
function).

	DBIntegral
	If a type is an instance of DBIntegral, it means that the type stores
integral (whole) numbers. The Rel8.Expr.Num module provides familiar
Expr functions like fromIntegral to convert between types.

	DBFractional
	If a type is an instance of DBFraction, it means that the type supports
the / operator, and literals can be created via Haskell’s Rational
type class. This type class provides the Fracitonal (Expr a) instance.

DBString

This type class indicates that a database type supports the string_agg()
aggregation function.

Expr and Sql

Expr

Now that we’ve seen how types are bridged between a database and Haskell via
DBType, we can start looking at how expressions are modelled. In Rel8, any
expression will be a value of the form Expr a, where a is the type of
the expression. For example, the SQL expression user.id = 42 is an Expr
Bool, and the subexpressions user.id and 42 might be Expr
UserIds.

Exprs are usually created by combining other Exprs together, like
using numeric operations like + and *, or by quoting Haskell values into
queries with lit. Continuing with the example of user.id = 42, we can
write this in Rel8 as:

userId ==. lit (UserId 42)

Here it’s assumed that a userId :: Expr UserId expression is already in
scope, and we can compare that against another Expr UserId using the ==.
operator (which is like Haskell’s normal == operator, but lifted to work on
Expr). The expression lit (UserId 42) quotes the Haskell term UserId
42 literally as the SQL expression 42. This particular encoding is chosen
because UserId is simply a newtype around Int64.

null

So far we’ve only talked about DBType, which represents database types
excluding null. Rel8 chooses this encoding because null is rather
special in SQL, and doesn’t really constitute a distinct type. For example,
there is no SQL notion of “stacking” nulls - which is to say a type like Maybe
(Maybe UserId)) has no real analogous type in SQL.

Of course, as null is pervasive in SQL queries, Rel8 does support null -
simply wrap up your type in Maybe. Nothing will be translated as
null, and Just is used to represent non-null values.

Rel8 comes with a set of functions to work with null values thash should
feel familiar to Haskell programmers:

	null creates null values (you can also use lit Nothing).

	nullify turns an Expr a into a Expr (Maybe a) (like Just).

	nullable allows you to eliminate null values, like the maybe function.

	isNull and isNonNull work like isNothing and isJust,
respectively.

	mapNullable is like fmap for Maybe, and allows you to map over
non-null values.

	liftOpNullable is like liftA2 for Maybe, and allows you to combine
expressions together, given a way to combine non-null expressions.

SQL and null-polymorphic expressions

Through the API reference documentation for Rel8, you might encounter the
Sql type class. For example, if we look at the type of litExpr, we
have:

litExpr :: Sql DBType a => a -> Expr a

Here Sql DBType a means that a can either be literally a type that has
an instance of DBType (like UserId or Bool), or that same type
wrapped in Maybe (so Maybe UserId or Maybe Bool). Maybe here
encodes the SQL concept of null.

Some functions work regardless of whether or not a value is null, and in these
cases you’ll see Sql DBType a. Sql can be used with any DBType
subtype. For example, the type of div is:

div :: Sql DBIntegral a => Expr a -> Expr a -> Expr a

Which means div works on any DBIntegral a, including Maybe a.

Tables

So far we’ve seen that DBType bridges Haskell types to database types, and
Expr lets us write SQL expressions using these types. The next concept is to
understand how tables are mapped into Rel8.

In Rel8, we understand a table to be a list of columns. Each column has some
associated metadata - a column has a type, but it also has information as to
whether it can store null, the name of the column, and whether this column
has a default value. All of this metadata can be configured when you define
custom table types, but first we’ll look at some built in tables.

Expr is a single-column table

Any time you have an Expr, you also have a table. All Exprs are tables
that consist of exactly one column. This means that whenever a table is
expected, you can usually use an Expr as well.

Tuples combine tables

You can use Haskell’s normal tuple syntax to combine tables into larger tables.
Now that we know that an Expr is a table with one column, we can use tuples
to build larger tables. For example, if we have userId :: Expr UserId and a
name :: Expr Text, we can pair these together as (userId, name) :: (Expr
UserId, Expr Text).

Rel8 supports tuples with two, three, four and five elements. Beyond that, we
suggest writing a custom table type (though you can also nest tuples).

Custom table types

The primary way to define a table in Rel8 is to use the higher-kinded data
pattern. Rel8 advocates this system because it means you can define your data
type once, but use it in the context of Haskell expressions (for example, to
serialize it as JSON to use as a REST API call response type), and also within
Rel8 queries. This allows developers to share their understanding of a type in
multiple domains, while also reducing the amount of code that has to be written
and maintained.

To define a custom table using this pattern, you define a Haskell data type that
has a single parameter (conventionally called f). Next, we suggest using
record syntax to define the fields of your data type, and for each field use the
Column type family to define the type of the column. Once all fields have
been defined, you can bridge this type with Rel8 by deriving Generic and
Rel8able instance.

A typical table definition might look like this:

data User f = User
 { userId :: Column f UserId
 , userName :: Column f Text
 , userCreatedAt :: Column f UTCTime
 , userEmail :: Column f (Maybe EmailAddress)
 }
 deriving stock (Generic)
 deriving anyclass (Rel8able)

Writing queries with Query

To fetch data from a database, Rel8 allows you to write SELECT queries using
the Query monad. While this monad might look a little different from
ordinary SQL, it is equal in expressivity, but due to Haskell’s do notation
we get to benefit from all the means of abstraction available.

Understanding the Query monad

Before we look at special functions for working with Query, we’ll first take
a moment to understand how the Query monad works. First, what does the type
Query a mean? To be a Query a means to be a SQL SELECT query that
selects rows of type a. Usually a will be an instance of Table Expr,
such as Expr Text, or maybe BlogPostComment Expr.

As Query is an instance of Monad means that we already have three
familiar APIs to work with: Functor, Applicative, and Monad.

Functor Query

The Functor instance gives us access to fmap, and its type is:

fmap :: (a -> b) -> Query a -> Query b

fmap uniformly transforms rows of one type into rows of another type. In
SQL, this is corresponds to a projection. For example, if we have a Query
(User Expr), we might do fmap userId to transform this into a Query
(Expr UserId).

Applicative Query

The Applicative instance for Query gives us:

pure :: a -> Query a
(<*>) :: Query (a -> b) -> Query a -> Query b

pure constructs a Query that returns exactly one row - a row containing
the a that was given. This might seem fairly pointless, but it’s an
important Query when compared with (<*>). The <*> combines two
Querys by taking their cartesian product, followed by a projection that
combines each row into a new row.

One example of using the Applicative operators is to combine two Querys
into a tuple:

pure (,) <*> queryA <*> queryB

Monad Query

The final type class to discuss is Monad Query. Monad Query has two
methods:

return :: a -> Query a
(>>=) :: Query a -> (a -> Query b) -> Query b

return is the same pure, so we won’t discuss this further. The much more
interesting operation is >>= - commonly referred to as “bind”. This operator
allows you to extend a Query with a new query. In SQL this is also similar
to a cartesian product, but uses the LATERAL modifier to allow the second
query to refer to columns from the first.

This extension operator allows you to expand each row in the first query into
zero, one, or many rows, according to the given function. For example, if we
have a database of orders, we might write:

getAllOrders >>= \order -> getUserById (orderUserId order)

This Query will return, for each Order, the User who placed that
order. In this case, this is a one-to-one relationship, so we get back exactly
as many rows as there are orders.

Going in the other direction, we have:

getAllUsers >>= \user -> getOrdersForUser (userId user)

This is a different query, as we start by fetching all Users, and for each
user find all Orders they have placed. This Query has a different
cardinality, as we’re following a one-to-many relationship: any User may
have zero, one, or many orders.

Haskell has special syntax for working with monads - do notation. do
notation allows you to write these queries in a simpler form, where we don’t
have to introduce functions. Expanding on the latter query, we could write:

do user <- getAllUsers
 order <- getOrdersForUser user
 return (user, order)

Now we have a query that, for each User, fetches all orders for that user.
The final return means that for each User and Order, we’ll return a
single row.

Selecting rows from tables

With the more theoretical side of Query considered, we can start looking at
the more pragmatic side, and how Query can express some common SQL idioms.

First, one of the most common operations is to select all rows from a base
table. In SQL, this is a SELECT * FROM x query, and in Rel8 we use each
with a TableSchema.

Limit and offset

The SQL LIMIT and OFFSET keywords are available in Rel8 as limit
and offset. Note that, like SQL, the order of these operations matters.
Usually, the correct thing to do is to first apply an offset with offset,
and then use limit to limit the number of rows returned:

limit n . offset m . orderBy anOrdering

These operations are similar to Haskell’s take and drop operations.

Filtering queries

Rel8 offers a few different ways to filter the rows selected by a query.
Perhaps the most familiar operation is to apply a WHERE clause to a query.
In Rel8, this is done using where_, which takes any Expr Bool, and
returns rows where that Expr is true. For example, to select all public
blog posts, we could write:

blogPost <- each blogPostSchema
where_ $ blogPostIsPublic blogPost

An alternative way to write WHERE clauses is to use filter. This
operator is similar to the guard function in Control.Monad, but also
returns the tested row. This allows us to easily chain a filtering operation on
a query. The above query could thus be written as:

blogPost <- filter blogPostIsPublic =<< each blogPostSchema

where_ and filter allow you to filter rows based on an expression, but
sometimes we want to filter based on another query. For this, Rel8 offers
present and absent. For example, if all blog posts have a
list of tags, we could use present to find all blog posts that have been
tagged as “Haskell”:

blogPost <- each blogPostSchema
present do
 filter (("Haskell" ==.) . tagName) =<< tagFromBlogPost blogPost

Notice that this example uses present with a query that itself uses
filter. For each blog post, present causes that row to be selected
only if the associated query finds a tag for that blog post with the tagName
“Haskell”.

Like filter there is also a chaining variant of present - with.
We could rewrite the above query using with as:

haskellBlogPost <-
 each blogPostSchema >>=
 with (filter (("Haskell" ==.) . tagName) <=< tagFromBlogPost)

Inner joins

Inner joins are SQL queries of the form SELECT .. FROM x JOIN y ON ... Rel8
doesn’t offer a special function for these queries, as the same query can be
expressed by selecting from two tables (this is called taking the cartesian
product of two queries) and then filtering the result.

If we wanted to join each blog post with the author of the blog post, we would
write the SQL:

SELECT * FROM blog_post JOIN author ON author.id = blog_post.id

The alternative way to write this query with WHERE is:

SELECT * FROM blog_post, author WHERE author.id = blog_post.id

and this query can be written in Rel8 as:

blogPost <- each blogPostSchema
author <- each authorSchema
where_ $ blogPostAuthorId blogPost ==. authorId author

Hint

A good pattern to adopt is to abstract out these joins as functions. A
suggested way to write the above would be to extract out an “author for blog
post” function:

blogPost <- each blogPostSchema
author <- authorForBlogPost blogPost

where:

authorForBlogPost :: BlogPost Expr -> Query (Author Expr)
authorForBlogPost blogPost =
 filter ((blogPostAuthorId blogPost ==.) . authorId) =<<
 each authorSchema

While this is a little more code over all, in our experience this style
dramatically increases the readability of queries using joins.

Left (outer) joins with optional

A left join is like an inner join, but allows for the possibility of the join to
“fail”. You use left joins when you want to join optional information against a
row.

In Rel8, a LEFT JOIN is introduced by converting an inner join with
optional. While this approach might seem a little foreign at first, it has a
strong similarity with the Control.Applicative.optional function, and allows
you to reuse previous code.

To see an example of this, let’s assume that we want to get the latest comment
for each blog post. Not all blog posts are popular though, so some blog posts
might have no comment at all. To write this in Rel8, we could write:

blogPost <- each blogPostSchema

latestComment <-
 optional $ limit 1 $
 orderBy (commentCreatedAt >$< desc) $
 commentsForBlogPost blogPost

optional will transform a Query a into a Query (MaybeTable a).
MaybeTable is similar to the normal Maybe data type in Haskell, and
represents the choice between a justTable x and a nothingTable (like
Just x and Nothing, respectively). When you execute a query containing
MaybeTable x with select, Rel8 will return Maybe x. MaybeTable
comes with a library of routines, similar to the functions that can be used to
operate on Maybe. For more details, see the API documentation.

Hint

optional converts an inner join into a LEFT JOIN, but you can also go
the other way - and turn a LEFT JOIN back into an inner join! To do this,
you can use catMaybeTable, which will select only the rows when the left
join was successful.

Ordering results

Rel8 supports ordering the results returned by a Query, using SQL’s ORDER
BY syntax. To specify an ordering, you use orderBy and supply an
appropriate Order value.

An Order is built by combining the order of individual columns, each of
which can be either ascending or descending. To order a single column, you
combine asc or desc with Orders contravariant interface. For
example, if we have a table with a orderId column, we can order a Query
(Order Expr) by orderId with:

orderBy (orderId >$< asc)

To order by multiple columns, combine the individual orders with Orders
Monoid instance. We could extend the above example to order by the order
date first (with the most recent orders first) with:

orderBy (mconcat [orderDate >$< desc, orderId >$< asc])

Aggregating queries

Todo

Write this

Set operations

Todo

Write this

INSERT, UPDATE and DELETE

While the majority of Rel8 is about building and executing SELECT
statement, Rel8 also has support for INSERT, UPDATE and DELETE.
These statements are all executed using the insert, update and
delete functions, all of which take a record of parameters.

Note

This part of Rel8’s API uses the DuplicateRecordFields language
extension. In code that needs to use this API, you should also enable this
language extension, or you may get errors about ambiguous field names.

DELETE

To perform a DELETE statement, construct a Delete value and execute it
using delete. Delete takes:

	from
	The TableSchema for the table to delete rows from.

	using
	This is a simple Query that forms the USING clause of the DELETE
statement. This can be used to join against other tables, and the results
can be referenced in the deleteWhere parameter. For simple DELETEs
where you don’t need to do this, you can set using = pure ().

	deleteWhere
	The WHERE clause of the DELETE statement. This is a function that
takes two inputs: the result of the using query, and the current value
of the row.

	returning
	What to return - see RETURNING.

UPDATE

To perform a UPDATE statement, construct a Update value and execute it
using update. Update takes:

	target
	The TableSchema for the table to update rows in.

	from
	This is a simple Query that forms the FROM clause of the UPDATE
statement. This can be used to join against other tables, and the results
can be referenced in the set and updateWhere parameters. For simple
UPDATEs where you don’t need to do this, you can set from = pure ().

	set
	A row to row transformation function, indicating how to update selected rows.
This function takes rows of the same shape as target but in the Expr
context. One way to write this function is to use record update syntax:

set = \from row -> row { rowName = "new name" }

	updateWhere
	The WHERE clause of the UPDATE statement. This is a function that
takes two inputs: the result of the from query, and the current value of
the row.

	returning
	What to return - see RETURNING.

INSERT

To perform a INSERT statement, construct a Insert value and execute it
using insert. Insert takes:

	into
	The TableSchema for the table to insert rows into.

	rows
	The rows to insert. These are the same as into, but in the Expr
context. You can construct rows from their individual fields:

rows = values [MyTable { myTableA = lit "A", myTableB = lit 42 }

or you can use lit on a table value in the Result context:

rows = values [lit MyTable { myTableA = "A", myTableB = 42 }

	onConflict
	What should happen if an insert clashes with rows that already exist. This
corresponds to PostgreSQL’s ON CONFLICT clause. You can specify:

	Abort
	PostgreSQL should abort the INSERT with an exception

	DoNothing
	PostgreSQL should not insert the duplicate rows.

	DoUpdate
	PostgreSQL should instead try to update any existing rows that conflict
with rows proposed for insertion.

	returning
	What to return - see RETURNING.

RETURNING

PostgreSQL has the ability to return extra information after a DELETE,
INSERT or UPDATE statement by attaching a RETURNING clause. A common
use of this clause is to return any automatically generated sequence values for
primary key columns. Rel8 supports RETURNING clauses by filling in the
returning field and specifying a Projection. A Projection is a row
to row transformation, allowing you to project out a subset of fields.

For example, if we are inserting orders, we might want the order ids returned:

insert Insert
 { into = orderSchema
 , rows = values [order]
 , onConflict = Abort
 , returning = Projection orderId
 }

If we don’t want to return anything, we can use pure ():

insert Insert
 { into = orderSchema
 , rows = values [order]
 , onConflict = Abort
 , returning = pure ()
 }

Default values

It is fairly common to define tables with default values. While Rel8 does not
have specific functionality for DEFAULT, there are a few options:

unsafeDefault

Rel8 does not have any special support for DEFAULT. If you need to use
default column values in inserts, you can use unsafeDefault to
construct the DEFAULT expression:

insert Insert
 { into = orderSchema
 , rows = values [Order { orderId = unsafeDefault, ... }]
 , onConflict = Abort
 , returning = Projection orderId
 }

Warning

As the name suggests, this is an unsafe operation. In particular, Rel8 is not
able to prove that this column does have a default value, so it may be
possible to introduce a runtime error. Furthermore, DEFAULT is fairly
special in SQL, and cannot be combined like other expressions. For example,
the innocuous expression:

unsafeDefault + 1

will lead to a runtime crash.

Reimplement default values in Rel8

If you only need to access default values in Rel8, another option is to specify
them in Rel8, rather than in your database schema.

Hint

A common default value for primary keys is to use nextval to obtain the
next value from a sequence. This can be done in Rel8 by using the nextval
function:

insert Insert
 { into = orderSchema
 , rows = values [Order { orderId = nextval "order_id_seq", ... }]
 , onConflict = Abort
 , returning = Projection orderId
 }

Cookbook

This cookbook exists to help you easily form Rel8 queries. It’s main purpose is
to help those familiar with SQL to translate their queries into Rel8
Querys.

SELECT * FROM table

To select from a table, use each.

Inner joins

To perform an inner join against two queries, use where_ with a join
condition. For example, the following SQL:

SELECT * FROM table_a JOIN table_b ON table_a.x = table_b.y

can be written as:

myQuery = do
 a <- each tableA
 b <- each tableB
 where_ $ tableAX a ==. tableBY b

Left (outer) joins

A LEFT JOIN query is performed by using optional.

For example, the query:

SELECT * FROM table_a LEFT JOIN table_b ON table_a.x = table_b.y

can be written as:

myQuery = do
 a <- each tableA

 maybeB <- optional do
 b <- each tableB
 where_ $ tableAX a ==. tableBY b

 return (a, maybeB)

Note that maybeB here will be a MaybeTable, which is the Rel8
Query-equivalent of Maybe. This allows you to observe if a left join
has succeeded or failed.

Ordering results

A Query by default has no ordering - just like in SQL. If you rows back in
a certain order, you can use orderBy with an Order.

For example, the query:

SELECT * FROM my_table ORDER BY my_table.id ASC, my_table.x DESC NULLS FIRST

can be written as:

myQuery =
 orderBy (mconcat [myTableId >$< asc, myTableX >$< nullsFirst desc]) $
 each myTableSchema

Note that we use >$< (from Data.Functor.Contravariant) to select table
columns, and we can use mconcat to combine orderings.

If all columns of a table have an ordering, you can also use ascTable and
descTable. For example:

myQuery = orderBy ascTable $ each myTableSchema

Aggregations

Aggregations in Rel8 work by using aggregate, which takes a Query
(Aggregate a) and gives you back a Query a.

The following query:

SELECT sum(foo), count(distinct bar) FROM table_a

can be written as:

myQuery = aggregate do
 a <- each tableA
 return $ liftF2 (,) (sum (foo a)) (countDistinct (bar a))

where liftF2 comes from Data.Functor.Apply from the semigroupoids
library.

Combining aggregations

As Aggregate is an instance of Apply (which is very similar to
Applicative), individual aggregations can be combined. For example, one way
to take the average rating would be to write the query:

SELECT sum(rating.score) / count(rating.score) FROM rating

In Rel8, we can write this as:

myQuery = aggregate do
 rating <- each ratingSchema
 return $ liftF2 (/) (sum (score rating)) (count (score rating))

You can also use RebindableSyntax and ApplicativeDo:

{-# language ApplicativeDo, RebindableSyntax #-}

import Data.Functor.Apply ((<.>))

myQuery = aggregate do
 rating <- each ratingSchema
 return do
 scoreSum <- sum (score rating)
 numberOfRatings <- count (score rating)
 return (scoreSum / numberOfRatings)
 where (<*>) = (<.>)

For large aggregations, this can often make queries easier to read.

Tree-like queries

Rel8 has a fairly unique feature in that it’s able to return not just lists of
rows, but can also return trees.

To understand what this means, we’ll consider a small example query for blog
posts. We want our query to return:

	The latest 5 blog posts that have at least one tag each.

	For each blog post, all tags.

	For each blog post, the latest 3 comments if they exist.

In Rel8, we can write this query as:

latestBlogPosts = do
 post <- each postSchema

 -- Returns a `NonEmptyTable a` which ends up as a `Data.List.NonEmpty a` after the query is run
 tags <- some $ do
 tag <- each tagSchema
 where_ (tagPostId tag ==. postId post)
 return (tagName tag)

 -- Returns a `ListTable a` which ends up as a `[a]` after the query is run
 latestComments <-
 many $
 limit 3 $
 orderBy (commentCreatedAt >$< desc) do
 comment <- each commentSchema
 where_ (commentPostId comment ==. postId post)

 return (post, tags, latestComments)

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Rel8!

 		
 Getting Started

 		
 The Example Schema

 		
 Mapping Schemas to Haskell

 		
 Writing Queries

 		
 Simple Queries

 		
 Joins

 		
 Left Joins

 		
 Aggregation

 		
 DBType

 		
 Combining newtype and DBType

 		
 Parsing with DBType

 		
 Deriving DBType via ReadShow

 		
 Storing structured data with JSONEncoded

 		
 The DBType subtypes

 		
 DBEq

 		
 DBOrd

 		
 DBMax and DBMin

 		
 DBSemigroup and DBMonoid

 		
 DBNum, DBIntegral and DBFractional

 		
 DBString

 		
 Expr and Sql

 		
 Expr

 		
 null

 		
 SQL and null-polymorphic expressions

 		
 Tables

 		
 Expr is a single-column table

 		
 Tuples combine tables

 		
 Custom table types

 		
 Writing queries with Query

 		
 Understanding the Query monad

 		
 Functor Query

 		
 Applicative Query

 		
 Monad Query

 		
 Selecting rows from tables

 		
 Limit and offset

 		
 Filtering queries

 		
 Inner joins

 		
 Left (outer) joins with optional

 		
 Ordering results

 		
 Aggregating queries

 		
 Set operations

 		
 INSERT, UPDATE and DELETE

 		
 DELETE

 		
 UPDATE

 		
 INSERT

 		
 RETURNING

 		
 Default values

 		
 unsafeDefault

 		
 Reimplement default values in Rel8

 		
 Cookbook

 		
 SELECT * FROM table

 		
 Inner joins

 		
 Left (outer) joins

 		
 Ordering results

 		
 Aggregations

 		
 Combining aggregations

 		
 Tree-like queries

_static/minus.png

_static/plus.png

_static/file.png

